مرجع تخصصی مهندسی زلزله Earthquake Engineering

پایگاه تخصصی مهندسی زلزله، کتاب ها، جزوات و مقالات مهندسی زلزله، دینامیک سازه ها و لرزه شناسی







مهندسی زلزله

۷ مطلب با کلمه‌ی کلیدی «مهندسی زلزله» ثبت شده است

مفاهیم مهندسی زلزله

رابطه گسل با زلزله

رابطه گسل با زلزله دو طرفه می‌باشد. یعنی وجود گسلهای فراوان در یک منطقه سبب بروز زلزله می‌گردد. این زلزله به نوبه خود سبب ایجاد گسل جدیدی گردیده و نتیجتا تعداد شکستگیها زیادتر شده و به این ترتیب قابلیت لزره خیزی منطقه افزایش می‌یابد.
نحوه آزاد شدن انرژی زلزله
ممکن است یک زلزله به همراه خود پیش لرزه و پس لرزه‌هایی داشته باشد، که این دو قبل و بعد از زلزله اصلی ممکن است وقوع یابند، به عبارتی دیگر این موضوع به نحوه آزاد شدن انرژی زلزله بستگی دارد. بطوری که انرژی زلزله بصورتهای زیر آزاد می‌گردند:

پیش لرزه
گاهی اوقات از بروز زلزله اصلی ، یکسری زلزله‌هایی با بزرگی کمتر از زلزله اصلی به وقوع می‌پیوندند که معمولا فراوانی آنها با نزدیک شدن به زمان وقوع لرزش اصلی ، افزایش می‌یابد.

لرزش اصلی
همان زلزله اصلی بوده که بواسطه آن اکثر انرژی ذخیره شده در سنگها یکباره آزاد می‌گردد و چنانچه داده‌های مربوط به یک زلزله بزرگ غیر دستگاهی باشد مهلرزه نامیده می‌شود.

پس لرزه
زلزله‌های خفیفتری که غالبا پس از لرزش اصلی ، از حوالی کانون زلزله اصلی منشأ می‌گیرند، را پس لرزه می‌گویند. پس لرزه‌ها می‌توانند حتی تا سالها پس از وقوع زلزله‌های اصلی نیز
به طول انجامد.

دسته لرزه
مجموعه‌ای از تعداد زیادی زلزله که در یک منطقه محدود در مقطع زمانی در حد هفته تا چند ماه به وقوع می‌پیوندد. دسته لرزه‌ها غالبا در نواحی آتشفشانی دیده می‌شوند.

ریز لرزه
زلزله‌های ضعیفی هستند که بزرگی آنها 3 ریشتر و یا کمتر از 3 بوده و غالبا افزایش ناگهانی و نامنظم آنها نشانه قریب الوقوع بودن زلزله اصلی می‌باشند.

بزرگای محلی ریشتر و بزرگای گشتاوری

به طور معمول برای تخمین میزان بزرگای زلزله مقیاس های مختلفی همچون مقیاس ریشتر و بزرگای گشتاوری استفاده می شود. مقیاس ریشتر توسط چارلز ریشتر در سال 1935 برای بیان بزرگای یک زلزله پیشنهاد داده شد که بر مبنای لگاریتم بیشینه دامنه ثبت شده زلزله در فاصله 100 کیلومتری از مرکز زلزله تعریف می شود. بزرگای محلی ریشتر بهترین مقیاس شناخته شده می باشد اما همیشه مناسبترین مقیاس نمی باشد. که به طور معمول بزرگای ریشتر برای زلزله های کوچکتر از M5-6 مناسب‌تر است (به دلیل پدیده اشباع شدن).

مقیاس ریشتر بر اساس اندازه گیری خصوصیات مختلف حرکات زمین توسط دستگاه می باشد و اثرات انرژی کل آزاد_شده زلزله به صورت مناسب در این مقیاس دیده نمی شود زیرا لزوماً افزایش خصوصیات حرکات زمین متناسب با افزایش انرژی آزاد شده در اثر زلزله نمی باشد. عدم توجه به این امر به خصوص در زلزله های بزرگ می تواند تخمین غیرواقعی از بزرگا به همراه داشته باشد. به همین دلیل بزرگای گشتاوری در اواخر دهه 70 میلادی پیشنهاد شده که برمبنای گشتاور لرزه ای (که با توجه به خصیوصیات گسل تعیین می شود) می باشد. به عبارت ساده تر گشتاور لرزه ای بیان می کند که نیروی لازم برای ایجاد امواج ثبت شده چه مقدار می باشد.

۰ نظر موافقین ۰ مخالفین ۰

یک مهندسی زلزله چه چیزی را باید بداند

یک مهندس زلزله باید حداقل هایی را راجع به علت و چگونگی تحریک لرزه ای، خصوصیات انواع زلزله ها و پارامترهای موثر در ویژگی های رکورد ها را بداند. به خصوص آن بخش از یافته های علمی که بر روی مصنوعات بشری از "دیدگاه مهندسی" تاثیر قابل توجهی دارد.

به عبارت دیگر دانستن حقایقی از علت و چگونگی زلزله که بر روی پاسخهای سازه تاثیر قابل توجهی دارد برای یک مهندس زلزله ضروری است. مثال سادهء آن نوع خاک و طبقه بندی موجود در آیین نامه ها و دستورالعملها . مثال پیچیده تر آن چگونگی تاثیر زلزله حوزه نزدیک بر پاسخ ها.

یک مهندس زلزله باید درک صحیح از رفتار سیستم های سازه ای و نحوه ی عملکرد سازه ها به این تحریک ها و روش های بهبودی پاسخ لرزه ای سازه ها و کاهش آسیب های وارد به سازه و تمام آنچه موجب بهبود عملکرد سازه می شود را باید به درستی درک کرده و شناخت کامل داشته باشد.

مهندس زلزله باید بداند طیفه ای استاندارد 2800 بر اساس چه روشی بدست امده است و برای چه سازه هایی قابل استفاده است و با توجه به ریسکی که میخواهد متحمل شود چقدر روابط تخمین نیروی زلزله 2800 قابل اعتماد است.

مهندس زلزله باید بداند تاثیر خاک بر محتوای فرکانسی تحریک چگونه است و ایا نیاز به مطالعه ی دقیقتر ضروری میباشد و حداکثر چقدر میتواند تصورات ما را تغییر دهد.

مبنای روابط تخمین نیروی زلزله بر اساس ایین نامه ها را بداند.

 سازهء طراحی شده و ساخته شده قرار است در مقابل آزمونی قرار بگیرد به نام زلزله . بنابراین واقع بینی طراح در فاز طراحی بسیار مهم است. این واقع بینی اکتسابی است. طراح میتواند با مقایسهء پاسخهای تحلیلهای تاریخچه زمانی غیرخطی و پاسخهای تحلیلهای فاز طراحی گامی به سمت واقع بینی بردارد. هرچند که مدلسازیها دارای حرف و حدیث بسیار است اما بهتر از "هیچی" است.اینکه بدانیم ویژگیهای سازه در طول زلزله تغییر قابل توجهی میکند و تاثیرپذیری ان از زلزله در طول همان زلزله تغییر میکند. غیرواقع بینی مهندسین نسبت به تفاوت پیش فرضهای طراحی و واقعیت به ویژه در تحریک لرزه ای ریشهء بسیاری از ... میباشد.

۰ نظر موافقین ۰ مخالفین ۰

نگاه عمیق بر مهندسی سازه و زلزله

نگاه عمیق بر مهندسی سازه و زلزله

یک مهندس زلزله باید حداقل هایی را راجع به علت و چگونگی تحریک لرزه ای بداند. به خصوص آن بخش از یافته های علمی که بر روی مصنوعات بشری از “دیدگاه مهندسی” تاثیر قابل توجهی دارد.

به عبارت دیگر دانستن حقایقی از علت و چگونگی زلزله که بر روی پاسخهای سازه تاثیر قابل توجهی دارد برای یک مهندس زلزله ضروری است. مثال سادهء آن نوع خاک و زون بندی موجود در آیین نامه ها و دستورالعملها . مثال پیچیده تر آن چگونگی تاثیر زلزله حوزه نزدیک بر پاسخ ها.

اینکه بدانیم طیفهای ۲۸۰۰ بر اساس چه روشی بدست امده است و برای چه سازه هایی قابل استفاده است و با توجه به ریسکی که میخواهیم متحمل شویم چقدر روابط تخمین نیروی زلزله ۲۸۰۰ قابل اعتماد است.

اینکه بدانیم تاثیر خاک بر محتوای فرکانسی تحریک چگونه است و ایا نیاز به مطالعهء دقیقتر ضروری میباشد و حداکثر چقدر میتواند تصورات ما را تغییر دهد.

مبنای روابط تخمین نیروی زلزله بر اساس ایین نامه ها را بدانیم.

و اما مهمترین نکته : سازهء طراحی شده و ساخته شده قرار است در مقابل آزمونی قرار بگیرد به نام زلزله . بنابراین واقع بینی طراح در فاز طراحی بسیار مهم است. این واقع بینی اکتسابی است. طراح میتواند با مقایسهء پاسخهای تحلیلهای تاریخچه زمانی غیرخطی و پاسخهای تحلیلهای فاز طراحی گامی به سمت واقع بینی بردارد. هرچند که مدلسازیها دارای حرف و حدیث بسیار است اما بهتر از “هیچی” است.اینکه بدانیم ویژگیهای سازه در طول زلزله تغییر قابل توجهی میکند و تاثیرپذیری ان از زلزله در طول همان زلزله تغییر میکند. غیرواقع بینی مهندسین نسبت به تفاوت پیش فرضهای طراحی و واقعیت به ویژه در تحریک لرزه ای ریشهء بسیاری از … میباشد.

صرفا مطالب فوق الذکر بنده بر اساس دو پارامتر تحریک لرزه ای و پاسخ سازه بوده است. اگر وارد نگرش سطح عملکردی بشویم غیرواقع بینی ها و در نظر نگرفتن عدم قطعیتها مشهودتر خواهد بود.

توضیحاتی در مورد نیروی زلزله:
۱. از زمان تولد ضوابط بارگذاری زلزله در سال ۱۹۱۰ تا کنون میلیونها ساختمان در جهان براساس نیروی پیشنهادی در آیین نامه طرح و اجرا شده اند. تقریبا اکثر آیین نامه های جهان یک برش پایه حدود یکدهم وزن ساختمان را در نظر میگیرد که به صورت تقریبا خطی در طبقات توزیع میگردد.
۲. همانطور که در نظرات اعلام شده بخوبی مشاهده میشود تصور عام بر این است که حرکت زمین ناشی از زلزله در پیساختمان حرکتی را بوجود می آورد که بر اساس قوانین فیزیکی و معادلات دینامیک سازه موجب ایجاد ارتعاش و نیروی در اجزای سازه میگردد.
۳. نه تنها در اظهار نظر دوستان، که در هیچیک از کتب و مقالات بیشماری که در ۵۰ سال گذشته نوشته شده ارتباط دقیق میان نیروههایی که بر اساس این روش علمی محاسبه شده باشد و آنچه در آیین نامه های زلزله در سراسر جهان مبنای طراحی است ارائه نشده و اگر هم بحثی مطرح شده صرفا در حد کلی گویی است.
۴. در سالهای ۱۹۱۰ تا ۱۹۴۰ که اولین شتابنگاشت ثبت شد (ال سنترو در امریکا) اطلاعی از مقدار دقیق نیروی زلزله در دست نبود زیرا رکوردی وجود نداشت. بنابراین نیروی زلزله پیشنهادی صرفا بر پایه فرض استوار بود. حتی بعد از ثبت رکوردهای شتاب حداقل ۲۵ سال طول کشید تا جامعه علمی دریابد نیرویی که زلزله در سازه ایجاد میکند بسیار بزرگتر از مقادیر مفروض است.
۵. بخوبی میتوان دریافت که سازه هایی که بر اساس ضوابط آیین نامه طرح شوند در زلزله های قوی تسلیم میشوند.
۶. هنگامی که سازه ای در زلزله تسلیم شود نیروهای ایجاد شده در اعضای سازه بیش از آنکه تابع زلزله باشند متاثر از مقاومت تسلیم سازه اند و دیگر در اینجا نیروی زلزله معنای متعارف خود را از دست میدهد و بحث محاسبه نیروی سازهبه یک دور تسلسل منطقی می انجامد.
۷. بدین ترتیب اگر سازه ۷۰۰ کیلوگرمی بر اساس نیروی زلزله طرح برابر ۱۰۰ کیلوگرم طراحی شود و مقاومت تسلیم آن ۱۱۰ کیلوگرم باشد، نیروی ایجاد شده در آن تحت زلزله بم ۱۱۰ کیلوگرم است، تحت زلزله های طبس، منجیل، ال سنترو، پارک فیلد، کرایست چرچ و … همه و همه برابر ۱۱۰ کیلوگرم است. این دقت عجیب و بیمانند در پیش بینی نیروی زلزله قدرت آیین نامه را نشان نمیدهد زیرا بدیهی است طبق بحث فوق، سازه در همه این زلزله ها به تسلیم میرسد و در نتیجه حداکثر نیروی قابل انتقال از طریق اعضا به جرم سازه برابر با مقاومت تسلیم سازه است که ۱۱۰ کیلوگرم میباشد. اکنون اگر سازه بجای ۱۰۰ کیلوگرم برای ۷۰ کیلوگرم طراحی شود، نیروی ایجاد شده در آن به همین نسبت کاهش می یابد و به عکس، هنگامی که برای ۱۷۰ کیلوگرم طراحی شود، نیروی زلزله به همین نسبت افزایش می یابد. این مطلب را تعدادی از دوستان بخوبی متوجه شده و بیان نمودند.
۸. پس از روشن شدن این حقیقت که مقدار نیروی زلزله بسیار بزرگتر از فرضیات ماست، تکاپویی زیادی برای حل مساله صورت گرفت. در سال ۱۹۷۸ انجمن مهندسان سازه کالیفرنیا با طرح ایده ضریب رفتار بظاهر این مشکل را حل کرد. خیلی ساده. این ضریب عبارت است از نسبت نیروی ارتجاعی به غیرارتجاعی. تقریبا همه جهان متقاعد شدند که موضوع حل شده. مخالفتی با این پیشنهاد ابراز نگردید و خیلی زود این ایده در همه جا مورد استقبال گرفت.
۹. باید دانست ضریب رفتار هیچ پایه و اساسی ندارد و صرفا بازی با الفاظ است. صحبت در این مورد مفصل است و بنده در سی سال گذشته در کلاسها، سمینارها و کتبم تلاش کرده ام این موضوع را روشن سازم. بحث در مورد آن نیاز به فرصت بیشتری دارد که انشاله در آینده به آن خواهم پرداخت.
۱۰. محاسبه نیروها عموما برای آن است که سازه را برای این نیروها طرح کنیم تا سازه تحت این نیروها نه تنها تسلیم نشود بلکه یک فاصله ایمن با تسلیم را حفظ کند. رعایت این فاصله ایمن معیار طراحی ما میباشد. در مورد زلزله این معیار نقض میشود و لازم است معیار دیگری جایگزین آن شود. بدون این جایگزینی، استفاده از نیروی زلزله بی معناست و این همان خلائی است که در ایده ضریب رفتار وجود داشت.
در این مورد سخن بسیار زیاد است اما برای طرح آن نیاز به فرصت بیشتری است که امیدوارم در آینده نزدیک فراهم گردد
۱۱. هرچند در طرح ایده ضریب رفتار به از دست رفتار ملاک طراحی اشاره ای نشد اما بطور ضمنی مطرح شد که کاهش نیروهای ارتجاعی زلزله به علت شکل پذیری سازه است. شکل پذیری یک واژه کلی است و مادام که رابطه کمی بین شکل پذیری و ضریب رفتار مشخص نشده باشد صرفا تحویل مجهول به مجهول صورت گرفته است و بس!
۱۲. در فاصله سالهای ۱۹۷۰ تا ۲۰۰۰ تحقیقات زیادی برای یافتن رابطه ضریب رفتار و شکل پذیری مورد نیاز صورت گرفته که شرح آن از این گفتار خارج است اما دوستان باید توجه داشته باشند شکل پذیری مورد نیاز در زلزله و شکل پذیری موجود در سازه دو عامل کاملا متفاوتند. متاسفانه حتی امروز نیز علیرغم حجم بسیار زیاد تحقیقات علمی، در مورد شکل پذیری موجود انواع سازه ها اطلاعات جامعی در دست نیست.
۱۳. بیرون آمدن از این کلاف سر در گم یک راه دارد: طراحی برای تغییرشکل. در واقع سازه در زلزله های قوی چنانچه به علت نبود مقاومت کافی تسلیم شود، آنچنانکه اکثر ساختمانهای موجود اینگونه اند، لازم است دارای ظرفیت تغییرشکل کافی باشد تا خراب نشود. بنا بر این باید سازه را طوری طرح کرد که وقتی در معرض زلزله قرار میگیرد تغییرشکهای ایجاد شده در اجزای آن از حد تحمل این اجزا خارج نشود.
۱۴. در سال ۲۰۰۰ طراحی برای تغییرشکل با عنوان طراحی عملکردی در نشریه فیما ۳۵۶ ارائه شد که ترجمه آن چند سال بعد با نام نشریه ۳۶۰ در ایران منتشر گردید.
۱۵. باید توجه داشت هرگز نباید انتظار داشت طراحی به دو روش مقاومت و تغییرشکل به نتایج یکسانی منجر شود. روش مقاومت اصولا نمیتواند ملاک دقیقی برای پایداری یا ناپایداری سازه در زلزله بدست دهد زیرا از اساس زیر پایش خالی است. همینکه پذیرفتیم سازه با اعمال ضریب رفتار تسلیم شود ملاک را از میان برده ایم زیرا در روش مقاومت ملاک مقاومت است و اگر آن را حذف کنیم بی آنکه ملاک جدیدی جایگزین کرده باشیم تیشه را بر ریشه منطق این بنا فرود آورده ایم. از این رو، تنها راه باقیمانده برای ارزیابی لرزه ای دقیق، استفاده از روش تغییرشکل است.
۱۶. نا آشنایی با این مبانی و استفاده از روشهای مقاومت برای ارزیابی آسیب پذیری لرزه ای میتواند هزینه های گزافی و بیموردی را متوجه اقتصاد کشور نماید. پدیده ای که در ۱۵ سال گذشته به کرات شاهد بوده ایم. مساله ای که باید توسط اهل فن و در محافل علمی به تفصیل مورد بررسی و کاوش قرار گیرد. همه باید بدانند روشهای مقاومت مانند آنچه در آیین نامه ۲۸۰۰ و بخش خطی نشریه ۳۶۰ آمده است برای ارزیابی پایداری لرزه ای چندان مناسب نمیباشند و باید از روشهای غیرخطی بویژه روش دینامیکی غیرخطی استفاده کرد.
سوال بسیار مهمی است. در واقع جان کلام همینجاست. گمانم اولین محاسبه در سال ۱۹۵۶ توسط هاوزنر بر روی شتابنگاشت ثبت شده در سال ۱۹۴۰ انجام شد که نشان میداد نیروی زلزله بسیار بزرگتر از آیین نامه است اما واقعیت این بود که سازه هایی که بر اساس آیین نامه ساخته شده بود عمدتا در زلزله پایدار مانده بودند. ژاپن و کالیفرنیا در واقع دو میز زلزله طبیعی هستند و وقوع مکرر زلزله های نسبتا قوی این امکان را به ما داده تا عملکرد ساختمانها را مشاهده و ارزیابی کنیم. عدم فروریزی ساختمانهای بظاهر خیلی ضعیف محققان را بر آن داشت که رفتار سازه را پس از تسلیم دنبال کنند. اینکار در دهه شصت با انجام تحلیلهای دینامیکی غیرخطی انجام شد که نتایج آن در مقالات متعدد در کنفرانسهای زلزله دهه شصت ارائه شده و به طرح ایده طیف غیرارتجاعی منجر شد که بحث مفصل آن در فصل سوم کتاب بنده آمده است. کوتاه سخن اینکه نیروی زلزله برخلاف نیروی جاذبه ناپایستار و گذرا است. برای نیروهای ناپایستار نیازی به اعمال ضابطه مقاومت نیست و در صورت لزوم میتوان از آن چشم پوشید و بجای آن ملاک تغییرشکل را جایگزین نمود که میشود طراحی بر اساس عملکرد. نیروهای حرارتی نیز ناپایستارند و میتوان به همین ترتیب عمل کرد و به عنوان مثال پایه های پل لازم نیست برای نیروهای ناشی از تغییرات دما در کفه پل طرح شوند بلکه کافی است بتوانند جابجایی مربوطه را تحمل کنند! امیدوارم این توضیحات تا حدی موضوع را روشن کردن باشد و توصیه میکنم فصل سوم کتاب را بدقت مطالعه فرمایید و در صورت ابهام بفرمایید تا توضیح دهم
منبع: گروه تلگرامی پولاد سازه
۰ نظر موافقین ۰ مخالفین ۰

زلزله های حوزه نزدیک Near field earthquake

ارتعاشات زمین در سایت های مجاور گسل باعث خرابی های گسترده ای در بسیاری از سازه هایی که حتی مسائل مربوط به آیین نامه زلزله را نیز رعایت کرده اند، گردیده است. از جمله در زلزله های (1995)Northridge ( 1994 ) Kobe ( 1994 ) Taiwan سازه های مهندسی در مجاورت مرکز زلزله دچار خرابی های زیادی شده اند. به همین علت بررسی ماهیت ارتعاشات زمین در نزدیکی منشا زلزله به عنوان یک ضرورت مطرح شده و مطالعات متعددی نیز در این زمینه صورت گرفته است. زلزله های حوزه نزدیک به نقاطی از زمین اطلاق می شود که فاصله آنها از مرکز سطحی زلزله کمتر از یک حد معین است. بعضی از محققین از جمله اکی این فاصله را ۵۰ کیلومتر می دانند و برخی دیگر این فاصله را ۱۵ کیلومتر در نظر می گیرند. با توجه به تحقیقات انجام گرفته بر روی رکوردهای ثبت شده، جنبش قوی زمین در نزدیکی گسل و تاثیر این نوع رکوردها بر روی سازه های مختلف نیاز توجه به این رکوردها و آثار آن بر روی سازه ها، در دو دهه اخیر اهمیت تحقیق بیشتری را به خود جلب نموده است. تحقیقات انجام گرفته در این زمینه عمدتا به دو دسته تقسیم می گردد :

دسته اول، مجموعه ای از تحقیقاتی است که بر روی رکوردهای ثبت شده ناشی از جنبش قوی زمین در نزدیکی گسل و مشخصات و پارامترهای مختلف مربوط به رکوردهای نزدیک گسل انجام گرفته است و با جمع بندی دقیق و جمع آوری اطلاعات بدست آمده از رکوردهای ثبت شده زمین لرزه ها در نزدیکی گسل اطلاعات کامل و قابل استفاده ای جهت بررسی رفتار سازه ها تحت اثر این نوع رکوردها در اختیار محققان و کارشناسان قرار می دهد.

دسته دوم، مجموعه تحقیقاتی است که مربوط به بررسی رفتار سازه های مختلف تحت اثر رکوردهای نزدیک گسل می باشد. مشخصات زلزله های نزدیک گسل به دلیل خواص امواج برشی و تجمع آثار این امواج در جلوی مسیر گسیختگی تفاوتهایی با مشخصات زلزله های دور از گسل دارند. وجود حرکت پالس گونه با پریود بلند در ابتدای رکوردها، بزرگتر بودن مولفه عمود بر جهت گسل نسبت به مولفه موازی گسل، تجمع انرژی و انتقال آن در مدت زمان کوتاه، اعمال نیروی ضربه گونه بر سازه های موجود در مسیر پیشرو گسیختگی، نسبت بیشینه سرعت به بیشینه شتاب بالا و وجود بیشینه شتاب و سرعت و جابجایی بالاتر از تفاوتهای حائز اهمیت رکوردهای زلزله های نزدیک گسل می باشد.

نکته ویژه در رکوردهای سرعت زلزله های نزدیک گسل علاوه بر موارد بالا، وجود سرعت های بزرگ زمین است که در پی پالسهای بلند مدت شتاب ایجاد می شود. نمودی از این اثرات به شکل ایجاد تغییر مکان های نوسانی بزرگ است که در رکورد تغییر مکان زمین نیز دیده میشود. وجود این مقادیر بزرگ در پارامترهای حرکات زمین در نزدیک گسل، مشخصه بارز رکورد زلزله های حوزه نزدیک گسل نظیر زلزله نورتریج، زلزله کوبه، زلزله چی چی تایوان و بم میباشند .

در زلزله انرژی بسیار زیادی که با گذشت زمان در محل جمع شده با یک پارگی در پوسته زمین آزاد می شود. این انرژی به صورت ارتعاشی پخش می شود. به هر میزان از مرکز زلزله دور می شویم، این ارتعاشات که عمدتا در سطح زمین توسط دستگاه های زلزله نگار ثبت می شوند، حالت یکنواخت تر و شکل مشخص تری دارند. با صرف نظر کردن از برخی مسائل، مثل اثر ساختگاه و در نظر گرفتن منشا کانونی برای زلزله می توان گفت، انتشار این امواج در فواصل دور به صورت کروی در داخل پوسته و دایروی در روی سطح زمین می باشند. به هر میزان به منشا زلزله نزدیکتر می شویم، حالت یکنواخت تری در ارتعاشات و پخش کروی گونه در پوسته زمین و دایروی شکل در سطح کاملا از بین می رود

 

مشخصات زلزله های حوزه نزدیک Near Field

هنگام وقوع زلزله خصوصیات ارتعاشی هر یک از نقاط زمین تابع عوامل مختلفی به شرح زیر است :

١. بزرگای زلزله

٢. فاصله منطقه از مرکز رها شدن انرژی

٣. خصوصیات زمین شناختی (اثر ساختگاه)

برخی مطالعات نشان میدهد که رکوردهای زلزله های نزدیک را می توان به دو بخش، با ضربان(پالس) و بدون ضربان تقسیم بندی کرد که در بعضی مواقع، پدیده ضربان در تاریخچه شتاب، سرعت و تغییر مکان یکی از ویژگی هایی است که زلزله حوزه نزدیک را از زلزله حوزه دور متمایز می کند. ضربان در زمین لرزه به صورت ضربان شتاب، سرعت و جابجایی می باشد که می توان آنها را به تغییرات بزرگ در تاریخچه های شتاب، سرعت و جابجایی تعریف کرد. شکل ۱ تاریخچه های شتاب، سرعت و جابجایی را برای چهار حرکت زمین نزدیک گسل مصنوعی، سیلمار، امپریال والی و السنترو نشان می دهد، چنانچه در شکل ۲-۱ مشاهده می شود، در زلزله های نزدیک گسل، حرکت زمین بر اثر گسل مصنوعی، سیلمار و امپریال والی با ضربان و بر اثر گسل السنترو، بدون ضربان می باشد.

 near Field

شکل ۱: تاریخچه های شتاب، سرعت و جابجایی را برای چهار حرکت زمین نزدیک گسل مصنوعی

به دلیل نزدیکی محل تا گسل، رکورد حاصل از سرعت و جابجایی زمین به جهت اینکه نسبت به شتاب دارای پریود بالاتری هستند دارای شکل پالس مانند با پریود بالا می باشند، که یادآور تحریکی به صورت ضربه هستند. در زمین لرزه های حوزه نزدیک به جهت فاصله کوتاه بین محل شکست (منبع تولید موج) و محل دریافت آن فرصتی جهت مستهلک شدن فرکانسهای بالا نبوده؛ از همین رو تاریخچه زمانی شتاب آنها محتوای فرکانسی بالایی دارند

 

۰ نظر موافقین ۰ مخالفین ۰

دایره المعارف زلزله و آتشفشان {پیشنهاد دانلود}

دریافت کتاب
عنوان: دانشنامه ی زلزله و آتشفشان
حجم: 17.7 مگابایت
توضیحات: دایره المعارف زلزله و آتشفشان

Encyclopedia of Earthquakes and Volcanoes, Third Edition

۰ نظر موافقین ۰ مخالفین ۰

فیلم های آموزشی مهندسی زلزله ی دانشگاه شریف

۰ نظر موافقین ۰ مخالفین ۰

مطالب مفید مهندسی زلزله (برگرفته از سایت محمدجواد خسرویانی)

مطالب وبلاگ آقای محمدجواد خسرویانی

http://mkhosraviani.blogsky.com/

  • اجرای شتاب نگاشت با فرمتAT2 در seismosignal(جمعه 12 تیر 1394 20:20)
    پس از دریافت رکورد هایی با فرمت AT2 VT2 and XT2 می تونید به راحتی اون ها رو در نرم افزار سیسموسیگنال بازش کنید: 1- رکورد رو طبق توضیحات قبلیم در بلاگ ار سایت PEER بگیرید. 2- فایلی به شما می ده با این فرمت 3- اون رو در نرم افزار سیسمو به این صورت باز کنید حواستون باشه که بخش First line, End line رو درست واردکنید طبق...
  • بدست آوردن پاسخ فرکانسی تابع همراه با کد متلب Frequency response function(سه‌شنبه 5 خرداد 1394 20:19)
    Systems respond differently to inputs of different frequencies. Some systems may amplify components of certain frequencies, and attenuate components of other frequencies. The way that the system output is related to the system input for different frequencies is called the frequency response of the system. The...
  • نحوه محاسبه تعداد آجر یا سفال مورد نیاز در یک ساختمان(یکشنبه 3 خرداد 1394 18:43)
    نحوه محاسبه تعداد آجر یا سفال مورد نیاز در یک ساختمان آجر و سفال از جمله مصالح ساختمانی ضروری مورد نیاز برای ساخت یک ساختمان می باشند. گاهاّ محاسبه اشتباه تعداد آجر، سفال یا تیغه برای یک ساختمان باعث 2 اتفاق خواهد شد : 1) آجر سفال کمتر از مقدار مورد نیاز به دست خریدار می رسد که این موضوع باعث اتلاف وقت، متناسب نبودن...
  • زلزله های مهم ایران از سال 856 میلادی(شنبه 26 اردیبهشت 1394 17:18)
    earthquakes in Iran Date Location Magnitude Fatalities Dec 21, 856 Damghan, Iran Fatalities 200,000 Mar 22, 893 Ardabil, Iran Fatalities 150,000 Nov 18, 1727 Tabriz, Iran Fatalities 77,000 Jun 7, 1755 Kashan, Iran Fatalities 40,000 Jan 23, 1909 Silakhor, Iran (Persia) M 7.3 Fatalities 6,000 May 25, 1923 Torbat - e...
  • پروژه خط انتقال گاز الموت(شنبه 26 اردیبهشت 1394 15:03)
    طرح انتقال گاز به الموت های غربی و شرقی به طول 70 کیلومتر هم اکنون در دست اجرا است و پس از بهره برداری، شهرهای رازمیان و معلم کلایه و 100 روستای این دو بخش را از نعمت گاز برخوردار خواهد کرد. هم اکنون لوله گذاری بیش از 25 کیلومتر از مسیر اجرای این طرح که صعب العبور و کوهستانی می باشد، انجام شده است. اجرای این پروژه هم...
  • جزوه تحلیل خطر پروفسور قدرتی(یکشنبه 20 اردیبهشت 1394 19:51)
    در این پست جزوه تحلیل خطر پروفسور قدرتی امیری استاد دانشگاه علم وصنعت رو قرار دادم که امیدوارم براتون مفید باشه . دانلود
  • تبدیل داده های ردیفی به ستونی(پنج‌شنبه 17 اردیبهشت 1394 17:06)
    در اینجا یک نرم افزاری رو برای دانلود گذاشتم که اگر داده های زلزله تون به صورت row ردیفی باشده می تونید راحت به column یا ستونی تبدیل کنید. کار کردن باهاش فوق راحته.......... دانلود
  • ارتعاشات تصادفی(Random Vibration)(دوشنبه 7 اردیبهشت 1394 20:02)
    ارتعاشات به نوعی از حرکت سیستمهای دینامیکی اطلاق می شود که به صورت نوسانی صورت پذیرفته و حرکت در یک پریود زمانی تکرار شود.که به دو دسته آزاد و تصادفی تقسیم می شوند. این نوع حرکت را در ساده ترین شکل می توان با یک جرم و یک فنر شبیه سازی کرد. با القاء یک تغییر مکان اولیه به جرم متصل به فنر و رها کردن آن، حرکت نوسانی رخ...

به ادامه ی مطلب مراجعه کنید.

۰ نظر موافقین ۰ مخالفین ۰